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Self-organized criticality driven by deterministic rules
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We have investigated the essential ingredients allowing a system to show self-organized criS&Gtyn
its collective behavior. Using the Bak-Sneppen model of biological evolution as our paradigm, we show that
the random microscopic rules of update can be effectively substituted with a chaotic map without changing the
universality class. Using periodic maps SOC is preserved, but in a different universality class, as long as the
spectrum of frequencies is broad enoudB1063-651X97)06410-9

PACS numbeps): 64.60.Lx, 05.45+b, 87.10+e

Complex extended systems showing critical behavior, @s a result of such a simple dynamical rule, the system ex-
lack of scale in their features, appear to be widespread ihibits sequences of causally connected evolutionary events
nature, being as diverse as earthqudligscreep phenomena calledavalanche$19]. The number of avalanchésfollows
[2], material fracturingi3—5], fluid displacement in porous a power-law distribution
media[6,7], interface growtH 8,9, river networks10-12,
and biological evolutio13—16. At variance with equilib- N(s)~s™7, 1)
rium statistical mechanics, these systems do not need any
fine tuning of a parameter to be in a critical state. To explainvheres is the size of the avalanche and-1.07[20,21 is
this behavior, Bak, Tang, and Wiesenfeld introduced théhe avalanche critical exponent. This kind of behavior, which
concept of self-organized criticalitSOQ through the is the essence of self-organized criticality, has actually been
simple sandpile modétL7,18. observed in paleontological d4ta3], suggesting that evolu-

In recent years, several models with extremal dynamicéion and extinction may be episodic at all scalasfeature
have been shown to exhibit SOC when noise is prefsgjt  that goes under the name ptinctuated equilibrium([14—

In this Brief Report we show that for this class of systems,16]-

noise can be replaced by either a chaotic @uasiperiodic In nature, the evolution of the least-fit species is due to
signal without destroying criticality. To illustrate this point genetic mutation. In the BS model, this mutation is realized
we consider, as an example, the model proposed by Bak arffy giving to the corresponding species a random fitness. As
Sneppen to describe the coevolution of natural spddigs ~ shown in [19], each lattice sitej is assigned a fitness,
The result that different, even deterministic, microscopichamely, a random number between O and 1. At each time
rules can induce SOC in the collective behavior of a popustep in the simulation the smallest fitness is found. Then the
lation points to a greater relevance of SOC in nature. fitnesses of the minimum and of the two nearest neighbors

In the Bak-Snepper(BS) model an ecosystem is de- are updated according to the rule
scribed by a one-dimensional lattice, every site of which is
occupied by a species. Species with stronger mutual interac- fria=F(fn) 2
tions in the ecosystem are arranged on nearest-neighbor sites
(the lattice can be interpreted as a food chain or as a foothat assigns a new fitnedg, ; at timen+1 to the chosen
web in more than one dimensiprEach species is character- lattice site. Indeed, in the original BS model, the functfon
ized by its fitness, describing the average number of offis just a random function with a uniform distribution between
springs an individual of that species can have in the give® and 1. The system reaches a stationary critical state in
environment. This definition of the fitness also accounts fowhich the distribution of fitnesses is zero below a certain
the greater resistance to mutations of fitter species since mthresholdf.~0.667 02[20,21] and uniform above it. It is
tations must propagate over a greater number of individualglso possible to define other quantities that show a power-
to become a genetic trait of the species. Thus the specidgw behavior with their own critical exponent. Prominent
with the lowest fitness is the one that feels the strongesamong them are the first and all return time distributions of
evolutionary pressurgl4—14. Its fate is to either evolve or activity (a site is defined as active when its fithess is the
get extinct, and its place will be taken by some newcomeminimum oné
species in the same ecological niche. Therefore, the fithess of
the species occupying that site is the most likely to change in Pe(t)~t77f, P,(t)~t" T4, (3)

a short time. The nearest-neighbor species will find a differ-
ent environment and their fitnesses will result changed toowhere 7~ 1.58 andr,~0.42[20-22.
Different microscopic rules have been proposed to de-
scribe how the mutation of the least-fit species induces mu-

*Electronic address: delos@mpipks-dresden.mpg.de tations of the nearest neighbdi24]: Changing the micro-
"Electronic address: angelo@mpipks-dresden.mpg.de scopical dynamical rule affects the universality class of the
*Electronic address: jose@mpipks-dresden.mpg.de model, but not its SOC property. This fact shows the robust-
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FIG. 2. Distribution of the fitnesses for=2,3,7,10; the thresh-
old for r=2 is quite different from the usual BS threshold, while
the threshold corresponding te=10 is very close to the BS value
(given by the vertical ling For all the simulations shown here, we
used a lattice of ¥ sites and % 10° iterations.

FIG. 1. First and all return distributions for a BS model with
Bernoulli updating rule witlhr =2. The exponents are the same as
for the BS model, namely;;=1.58 andt,=0.42. For all the simu-
lations shown here, we used a lattice df 8ites and X 10° itera-
tions exploiting the tree-algorithm explained in REZ6].

. . The reasons for studying this rule are manifold. On the one
ness of the SOC behavior and poses the question of what .tlheand, this map has already been considered in the context of

minimal requirements the BS model has to satisfy are 'rbiological evolution models and population dynamjeg—

order to be critical. . . A
o . : 29] and can thus provide a possible deterministic interpreta-
While in the BS model the updating ru@) is a random tion of the evolution inside every ecological niche. More-

fugctm()jn, one coul(;jg:on&dg(rj, m;teadd determgm_stm :‘pdaﬁngover, it has been shown that it describes the behavior of a
Indeed, we started by considering a deterministic rule, whosg; ;o variety of systems in natuf80]. On the other hand, it
statistical properties _resemble those of a stochastic functlorpTaS a regime in which it is chaotic as well as one in which it
namely, the Bernoulli map25] is not, depending on whether is bigger or less than the

critical value\..~3.569 94[25] (for A>\., there are win-

frr1=Ge(fr)=[rfql, (49 dows in which the map is periodic; in this paper we will take

\ outside these windowsAs Fig. 3 shows, for those values
where[ f] stands for the value df modulus 1 and e Nisa  of A for which the map is chaotic, the system not only ex-
constant. It has been showsee[25] and references thergin hibits SOC but also stays in the same universality class as the
that this map has a uniform invariant meas(far any inte- ~ original BS mode[22]. For\ <\.. we find that the system is
ger value ofr) and that the Lyapunov exponents given by  not critical any more. Indeed, beloh, every site follows a
A=Inr. In Fig. 1 we show the power-law behavior of the first

and all return probability distributions in the case 2. The 10°
critical exponents., 7,, andr; obtained coincide with those

found in[19] for the random updating. Moreover, our simu- 107 ¢
lations show that for all values ofthe systems fall in the BS 10°
universality class, i.e., they all have the same critical expo-

nents(see alsd22]). The stationary distribution of the fit- 10°
nesses, on the other hand, follows a different pattern. Indeed, £
Fig. 2 shows that the threshold fore=2 is bigger than the =
one found for the random case. On increasing the valug of &
the threshold moves towards the BS val(see Fig. 2 For
noninteger values af (r>1), SOC is still preserved within 10
the BS universality class. However, in this case, the distribu-
tion of the generated numbers is not uniform and conse-
quently it influences the distribution of the fitnesses at the 10° ‘ ‘
stationary state. 1 10 100

The next step is then to consider updating rules that can
be tuned to chaotic behavior by changing a parameter. To
that effect, we take as updating rule for the fitnesses th
logistic or Feigenbaum map, namely,

1000 10000 100000
Timet

FIG. 3. First and all return distributions for a BS model with the
?ogistic map withA =4 as updating rule. The exponents are the
same as for the BS mode}=1.58 andr,=0.42. In all the simu-
lations shown in this figure, we used a lattice df 8ites and 19
frri=Afa(1—1p). (5) iterations.
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10° quency distribution. A more detailed analysis of the change

30.0 in the universality class when varying the frequency range is

1w [ @ . 00 o) a matter of current investigation and will be presented else-

. ) ' where. If instead of choosing all the frequencies different we
107 ¢ 100 choosew;=w and all phases differen;# ¢; the SOC is

10° 0.0 destroyedeven if the fitnesses are organized above a thresh-

0.6 0.8 1.0

Fitness { old). This result sheds light on the loss of criticality for

model (5) when\ <\, because there the system reduces to
a model in which the sites are updated according to a peri-
odic rule where only conditiori8) and not condition(7) is
fulfilled.
It is worth noticing that even though chaotic maps pro-
duce series of numbers that mesgatistically resemble ran-
‘ ‘ ‘ dom numbergwith the exception of the functional form of
1 10 100 1000 10000 the invariant density the behavior of the systems feels the
Time t details of the underlying dynamics, as shown by the depen-
dence of the threshold on the paramatesf the Bernoulli
map. In particular, the Bernoulli map for=2 is formally
equivalent to a coin tosg25,31] (the paradigm of random-
and 7,=0.381). (b) Distribution of the fitnesses. In all the simu- n(_eséo and still the threshold is diff,ere“_t- However, at ,Variance
lations shown in this picture, we used a lattice df 2ites and ~ With the case of pure random noise, in the Bernoulli map the
5x 10° iterations. The frequencies; are uniformly distributed in ~ correlations decay exponentially instead of being func-
the interval[ ,407]. tion. Then the system feels the details of the rule and while
staying in the same universality class exhibits a different
periodic orbit and to understand this loss of criticality onethreshold. One can then conclude that, provided the statisti-
needs to investigate the case of periodic updating rules igal properties are those of a random process, SOC will per-

FIG. 4. (a) First and all return distributions for a BS model with
disordered periodic updating rules; the exponentsmarel.65(1)

every site. sist. These results are complementary to the ones obtained in
Let us then consider a model in which the choice of therefs. [32,33: They showed that a chaotic system can be
new fitness is done according to the map used instead of a heat bath to obtain thermalizatibe cha-

otic system is referred to as a “boostef32,33). This is
analogous to what happens in the BS model: N@isermal

or otherwisg can be replaced by a deterministic chaotic sys-
tem without significant changes in the stationary state. How-
ever, stochasticity in the updating rule is sufficient but not

. necessary: SOC persists even in the absence of chaos for
_sine(nt 1)+ ]+ 1, (6)  Pperiodic li/pdating rrJuIes.

2 The results shown here indicate that the feature that en-
sures SOC in systems with extremal dynamics is not the
randomness of the actual updated value but the fact that the
choice of the site where the change is going to be performed
(namely, the minimum ruleis random. Moreover, as long as
there is enough diversity among the species on the lattice, the

siMarcsin2f,—1)+ w;]+1
n+1— 2

where thew;’'s and ¢;’s are, in principle, different for each
site j and n is the time step. In our calculations we have
chosen the frequencies; such that

W] # | (7)  longer the memoryor the internal correlatiorof each mem-
_ ber, the higher the threshold. Indeed, in the case of chaotic
and the phaseg; to verify maps, the diversity is ensured by the random assignation of

b b, ®) the initial values and as much as the chaaoticity is increased
! - we see that the threshold decreases. The extremal case is

These two conditions are sufficient but not necessary. Inb€ing given by the BS model. .
deed, the results shown here do not change if, by chance, In the case of the periodic map instead, the random initial
Egs.(7) and(8) are not fulfilled for some pairi(j), as long ~ conditions are not enough to ensure diversity. Thus, in order
as the distribution of frequencies is broad enough. to have SOC, we have to choose at random also the internal

Bearing in mind that these maps are periodic, let us turdime scale, i.e., the periods. Summarizing, SOC can emerge
to Fig. 4, where the first and all return probabilities arein a fully deterministic model in the presence of disorder.
shown. The universality class changes with respect to the These results add strength to the relevance of SOC in
original BS model, with7;=1.65(1) andr,=0.391), but  physics and biology since they allow different microscopic
the SOC behavior is preserved. These exponents will in gemmechanisms to underlie its appearance as a collective behav-
eral depend on the particular choice of frequency distributiorior. From the point of view of biological evolution, this re-
(7). The range of frequencies chosen for Fig. 4 is just arsult could also account for less wild variations of the fit-
example out of a wide range of possibilities for the fre-nesses.
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At this stage, several questions arise. What is the mecha- Note addedAfter finishing this work we became aware of
nism that allows the system to recognize the underlying dyRef.[34], in which a similar line of reasoning is pursued for
namics? Moreover, when the microscopic rule is disorderedhe effects of disorder on a population of integrate-and-fire
periodic, does the distribution of the frequencies influenceoscillators.
the universality class of the model? These questions are, we We would like to thank T. Uzer, A. Maritan, R. Cafiero,
think, of utmost importance in order to understand the wide-and H. Kantz for their useful comments and suggestions and
spread appearance of self-organized criticality in nature. S. Panzeri for a careful reading of the manuscript.
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