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Self-organized criticality driven by deterministic rules

Paolo De Los Rios,* Angelo Valleriani,† and Jose´ Luis Vega‡

Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Str. 38, D-01187 Dresden, Germany
~Received 7 February 1997!

We have investigated the essential ingredients allowing a system to show self-organized criticality~SOC! in
its collective behavior. Using the Bak-Sneppen model of biological evolution as our paradigm, we show that
the random microscopic rules of update can be effectively substituted with a chaotic map without changing the
universality class. Using periodic maps SOC is preserved, but in a different universality class, as long as the
spectrum of frequencies is broad enough.@S1063-651X~97!06410-6#

PACS number~s!: 64.60.Lx, 05.45.1b, 87.10.1e
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Complex extended systems showing critical behavior
lack of scale in their features, appear to be widesprea
nature, being as diverse as earthquakes@1#, creep phenomena
@2#, material fracturing@3–5#, fluid displacement in porous
media@6,7#, interface growth@8,9#, river networks@10–12#,
and biological evolution@13–16#. At variance with equilib-
rium statistical mechanics, these systems do not need
fine tuning of a parameter to be in a critical state. To expl
this behavior, Bak, Tang, and Wiesenfeld introduced
concept of self-organized criticality~SOC! through the
simple sandpile model@17,18#.

In recent years, several models with extremal dynam
have been shown to exhibit SOC when noise is present@19#.
In this Brief Report we show that for this class of system
noise can be replaced by either a chaotic or aquasiperiodic
signal without destroying criticality. To illustrate this poin
we consider, as an example, the model proposed by Bak
Sneppen to describe the coevolution of natural species@19#.
The result that different, even deterministic, microsco
rules can induce SOC in the collective behavior of a po
lation points to a greater relevance of SOC in nature.

In the Bak-Sneppen~BS! model an ecosystem is de
scribed by a one-dimensional lattice, every site of which
occupied by a species. Species with stronger mutual inte
tions in the ecosystem are arranged on nearest-neighbor
~the lattice can be interpreted as a food chain or as a f
web in more than one dimension!. Each species is characte
ized by its fitness, describing the average number of
springs an individual of that species can have in the gi
environment. This definition of the fitness also accounts
the greater resistance to mutations of fitter species since
tations must propagate over a greater number of individu
to become a genetic trait of the species. Thus the spe
with the lowest fitness is the one that feels the strong
evolutionary pressure@14–16#. Its fate is to either evolve o
get extinct, and its place will be taken by some newcom
species in the same ecological niche. Therefore, the fitnes
the species occupying that site is the most likely to chang
a short time. The nearest-neighbor species will find a diff
ent environment and their fitnesses will result changed
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As a result of such a simple dynamical rule, the system
hibits sequences of causally connected evolutionary ev
calledavalanches@19#. The number of avalanchesN follows
a power-law distribution

N~s!;s2t, ~1!

wheres is the size of the avalanche andt;1.07 @20,21# is
the avalanche critical exponent. This kind of behavior, wh
is the essence of self-organized criticality, has actually b
observed in paleontological data@13#, suggesting that evolu
tion and extinction may be episodic at all scales~a feature
that goes under the name ofpunctuated equilibrium! @14–
16#.

In nature, the evolution of the least-fit species is due
genetic mutation. In the BS model, this mutation is realiz
by giving to the corresponding species a random fitness.
shown in @19#, each lattice sitej is assigned a fitness
namely, a random number between 0 and 1. At each t
step in the simulation the smallest fitness is found. Then
fitnesses of the minimum and of the two nearest neighb
are updated according to the rule

f n115F~ f n! ~2!

that assigns a new fitnessf n11 at time n11 to the chosen
lattice site. Indeed, in the original BS model, the functionF
is just a random function with a uniform distribution betwe
0 and 1. The system reaches a stationary critical stat
which the distribution of fitnesses is zero below a cert
threshold f c;0.667 02@20,21# and uniform above it. It is
also possible to define other quantities that show a pow
law behavior with their own critical exponent. Promine
among them are the first and all return time distributions
activity ~a site is defined as active when its fitness is
minimum one!

Pf~ t !;t2t f , Pa~ t !;t2ta, ~3!

wheret f;1.58 andta;0.42 @20–22#.
Different microscopic rules have been proposed to

scribe how the mutation of the least-fit species induces m
tations of the nearest neighbors@24#: Changing the micro-
scopical dynamical rule affects the universality class of
model, but not its SOC property. This fact shows the robu
4876 © 1997 The American Physical Society
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56 4877BRIEF REPORTS
ness of the SOC behavior and poses the question of wha
minimal requirements the BS model has to satisfy are
order to be critical.

While in the BS model the updating rule~2! is a random
function, one could consider, instead, deterministic updat
Indeed, we started by considering a deterministic rule, wh
statistical properties resemble those of a stochastic func
namely, the Bernoulli map@25#

f n115Gr~ f n!5@r f n#, ~4!

where@ f # stands for the value off modulus 1 andr PN is a
constant. It has been shown~see@25# and references therein!
that this map has a uniform invariant measure~for any inte-
ger value ofr ) and that the Lyapunov exponentl is given by
l5 lnr. In Fig. 1 we show the power-law behavior of the fir
and all return probability distributions in the caser 52. The
critical exponentst, ta , andt f obtained coincide with those
found in @19# for the random updating. Moreover, our sim
lations show that for all values ofr the systems fall in the BS
universality class, i.e., they all have the same critical ex
nents~see also@22#!. The stationary distribution of the fit
nesses, on the other hand, follows a different pattern. Ind
Fig. 2 shows that the threshold forr 52 is bigger than the
one found for the random case. On increasing the value or ,
the threshold moves towards the BS value~see Fig. 2!. For
noninteger values ofr (r .1), SOC is still preserved within
the BS universality class. However, in this case, the distri
tion of the generated numbers is not uniform and con
quently it influences the distribution of the fitnesses at
stationary state.

The next step is then to consider updating rules that
be tuned to chaotic behavior by changing a parameter.
that effect, we take as updating rule for the fitnesses
logistic or Feigenbaum map, namely,

f n115l f n~12 f n!. ~5!

FIG. 1. First and all return distributions for a BS model wi
Bernoulli updating rule withr 52. The exponents are the same
for the BS model, namely,t f51.58 andta50.42. For all the simu-
lations shown here, we used a lattice of 214 sites and 53109 itera-
tions exploiting the tree-algorithm explained in Ref.@26#.
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The reasons for studying this rule are manifold. On the o
hand, this map has already been considered in the conte
biological evolution models and population dynamics@27–
29# and can thus provide a possible deterministic interpre
tion of the evolution inside every ecological niche. Mor
over, it has been shown that it describes the behavior o
wide variety of systems in nature@30#. On the other hand, it
has a regime in which it is chaotic as well as one in which
is not, depending on whetherl is bigger or less than the
critical valuel`;3.569 94@25# ~for l.l` there are win-
dows in which the map is periodic; in this paper we will ta
l outside these windows!. As Fig. 3 shows, for those value
of l for which the map is chaotic, the system not only e
hibits SOC but also stays in the same universality class as
original BS model@22#. Forl,l` we find that the system is
not critical any more. Indeed, belowl` every site follows a

FIG. 2. Distribution of the fitnesses forr 52,3,7,10; the thresh-
old for r 52 is quite different from the usual BS threshold, whi
the threshold corresponding tor 510 is very close to the BS value
~given by the vertical line!. For all the simulations shown here, w
used a lattice of 214 sites and 53109 iterations.

FIG. 3. First and all return distributions for a BS model with th
logistic map withl54 as updating rule. The exponents are t
same as for the BS modelt f51.58 andta50.42. In all the simu-
lations shown in this figure, we used a lattice of 213 sites and 108

iterations.
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4878 56BRIEF REPORTS
periodic orbit and to understand this loss of criticality o
needs to investigate the case of periodic updating rule
every site.

Let us then consider a model in which the choice of
new fitness is done according to the map

f n115
sin@arcsin~2 f n21!1v j #11

2

5
sin@v j~n11!1f j #11

2
, ~6!

where thev j ’s andf j ’s are, in principle, different for each
site j and n is the time step. In our calculations we ha
chosen the frequenciesv j such that

v jÞv i ~7!

and the phasesf j to verify

f jÞf i . ~8!

These two conditions are sufficient but not necessary.
deed, the results shown here do not change if, by cha
Eqs.~7! and~8! are not fulfilled for some pair (i , j ), as long
as the distribution of frequencies is broad enough.

Bearing in mind that these maps are periodic, let us t
to Fig. 4, where the first and all return probabilities a
shown. The universality class changes with respect to
original BS model, witht f51.65(1) andta50.38(1), but
the SOC behavior is preserved. These exponents will in g
eral depend on the particular choice of frequency distribut
~7!. The range of frequencies chosen for Fig. 4 is just
example out of a wide range of possibilities for the fr

FIG. 4. ~a! First and all return distributions for a BS model wit
disordered periodic updating rules; the exponents aret f51.65(1)
and ta50.38(1). ~b! Distribution of the fitnesses. In all the simu
lations shown in this picture, we used a lattice of 212 sites and
53109 iterations. The frequenciesv i are uniformly distributed in
the interval@p,40p#.
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quency distribution. A more detailed analysis of the chan
in the universality class when varying the frequency rang
a matter of current investigation and will be presented e
where. If instead of choosing all the frequencies different
choosev j5v and all phases differentf jÞf i the SOC is
destroyed~even if the fitnesses are organized above a thre
old!. This result sheds light on the loss of criticality fo
model ~5! whenl,l` because there the system reduces
a model in which the sites are updated according to a p
odic rule where only condition~8! and not condition~7! is
fulfilled.

It is worth noticing that even though chaotic maps pr
duce series of numbers that may~statistically! resemble ran-
dom numbers~with the exception of the functional form o
the invariant density!, the behavior of the systems feels th
details of the underlying dynamics, as shown by the dep
dence of the threshold on the parameterr of the Bernoulli
map. In particular, the Bernoulli map forr 52 is formally
equivalent to a coin toss@25,31# ~the paradigm of random
ness! and still the threshold is different. However, at varian
with the case of pure random noise, in the Bernoulli map
correlations decay exponentially instead of being ad func-
tion. Then the system feels the details of the rule and wh
staying in the same universality class exhibits a differ
threshold. One can then conclude that, provided the stat
cal properties are those of a random process, SOC will p
sist. These results are complementary to the ones obtaine
Refs. @32,33#: They showed that a chaotic system can
used instead of a heat bath to obtain thermalization~the cha-
otic system is referred to as a ‘‘booster’’@32,33#!. This is
analogous to what happens in the BS model: Noise~thermal
or otherwise! can be replaced by a deterministic chaotic s
tem without significant changes in the stationary state. Ho
ever, stochasticity in the updating rule is sufficient but n
necessary: SOC persists even in the absence of chao
periodic updating rules.

The results shown here indicate that the feature that
sures SOC in systems with extremal dynamics is not
randomness of the actual updated value but the fact tha
choice of the site where the change is going to be perform
~namely, the minimum rule! is random. Moreover, as long a
there is enough diversity among the species on the lattice
longer the memory~or the internal correlation! of each mem-
ber, the higher the threshold. Indeed, in the case of cha
maps, the diversity is ensured by the random assignatio
the initial values and as much as the chaoticity is increa
we see that the threshold decreases. The extremal ca
being given by the BS model.

In the case of the periodic map instead, the random ini
conditions are not enough to ensure diversity. Thus, in or
to have SOC, we have to choose at random also the inte
time scale, i.e., the periods. Summarizing, SOC can eme
in a fully deterministic model in the presence of disorder

These results add strength to the relevance of SOC
physics and biology since they allow different microscop
mechanisms to underlie its appearance as a collective be
ior. From the point of view of biological evolution, this re
sult could also account for less wild variations of the fi
nesses.
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At this stage, several questions arise. What is the me
nism that allows the system to recognize the underlying
namics? Moreover, when the microscopic rule is disorde
periodic, does the distribution of the frequencies influen
the universality class of the model? These questions are
think, of utmost importance in order to understand the wi
spread appearance of self-organized criticality in nature.
n-

z

.

e,

y

a-
-
d
e
e

-

Note added. After finishing this work we became aware o
Ref. @34#, in which a similar line of reasoning is pursued fo
the effects of disorder on a population of integrate-and-
oscillators.

We would like to thank T. Uzer, A. Maritan, R. Cafiero
and H. Kantz for their useful comments and suggestions
S. Panzeri for a careful reading of the manuscript.
del.

ov’s
ly
ffi-

. E

i,

.

@1# J. M. Carlson and J. S. Langer, Phys. Rev. Lett.62, 2632
~1989!.

@2# S. I. Zaitsev, Physica A189, 411 ~1992!.
@3# A. Petri, G. Paparo, A. Vespignani, A. Alippi, and M. Costa

tini, Phys. Rev. Lett.73, 3423~1994!.
@4# P. Diodati, F. Marchesoni, and S. Piazza, Phys. Rev. Lett.67,

2239 ~1991!.
@5# G. Caldarelli, F. di Tolla, and A. Petri, Phys. Rev. Lett.77,

2503 ~1996!.
@6# D. Wilkinson and J. F. Willemsen, J. Phys. A16, 3365~1983!.
@7# M. Cieplak and M. O. Robbins, Phys. Rev. Lett.60, 2042

~1988!.
@8# K. Sneppen, Phys. Rev. Lett.69, 3539~1992!.
@9# K. Sneppen, Phys. Rev. Lett.71, 101 ~1993!. ,

@10# A. Rinaldo, I. Rodriguez-Iturbe, R. Rigon, E. Ijjasz-Vasque
and R. L. Bras, Phys. Rev. Lett.70, 822 ~1993!.

@11# A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R
Banavar, Science272, 984 ~1996!.

@12# G. Caldarelli, A. Giacometti, A. Maritan, I. Rodriguez-Iturb
and A. Rinaldo, Phys. Rev. E55, R4865~1997!.

@13# M. D. Raup, Science251, 1530~1986!.
@14# N. Eldredge and S. J. Gould,Punctuated Equilibria: An Alter-

native to Phyletic Gradualism in Models in Paleobiolog
~Freeman, Cooper and Co., San Francisco, 1972!.

@15# S. J. Gould and N. Eldredge, Paleobiology3, 115 ~1977!.
@16# N. Eldredge and S. J. Gould, Nature~London! 332, 211

~1988!.
@17# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381

~1987!.
@18# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A38, 364

~1988!.
,

@19# P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083~1993!.
@20# S. Maslov, M. Paczuski, and P. Bak, Phys. Rev. Lett.73, 2162

~1994!.
@21# M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E53, 414

~1996!.
@22# The two exponentst f and ta shown in Eq.~3! are not inde-

pendent and have to sum to 2 in the one-dimensional mo
On the other hand, also the exponentst in Eq. ~1! and, say,ta

are not independent since they are related through Masl
equation@23#. In this light, ta can be considered as the on
independent exponent of the model and its computation su
cient to check the universality class.

@23# S. Maslov, Phys. Rev. Lett.77, 1182~1996!.
@24# M. Vendruscolo, P. De Los Rios, and L. Bonesi, Phys. Rev

54, 6053~1996!.
@25# H. G. Schuster,Deterministic Chaos, 2nd ed.~VCH-Verlag,

Weinheim, 1989!.
@26# P. Grassberger, Phys. Lett. A200, 277 ~1995!.
@27# R. M. May, Science186, 645 ~1974!.
@28# R. M. May, Nature~London! 261, 459 ~1976!.
@29# R. M. May and G. F. Oster, Am. Nat.110, 573 ~1976!.
@30# P. Collet and J.-P. Eckmann,Iterated Maps on the Interval as

Dynamical Systems~Birkhauser, Boston, 1980!.
@31# J. Ford, Phys. Today36 ~4!, 40 ~1993!.
@32# M. Bianucci, L. Bonci, G. Trefan, B. West, and P. Grigolin

Phys. Lett. A174, 377 ~1993!.
@33# M. Bianucci, B. West, and P. Grigolini, Phys. Lett. A190, 447

~1994!.
@34# A. Corral, C. J. Pe´rez, and A. Dı´az-Guilera, Phys. Rev. Lett

78, 1492~1997!.


